Книга Unsupervised Machine Learning for Clustering in Political and Social Research

Формат
Мова книги
Видавництво
Рік видання

Offers researchers and teachers an introduction to clustering, with R code and real data to facilitate interaction with the concepts.

In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering.

Код товару
20497894
Характеристики
Тип обкладинки
М'яка
Мова
Англійська
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки
Опис книги

Offers researchers and teachers an introduction to clustering, with R code and real data to facilitate interaction with the concepts.

In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering.

Відгуки
Виникли запитання? 0-800-335-425
1167 грн
Доставка з UK 20-30 днів
Паперова книга
Сплачуйте частинами
Щоб сплатити частинами: потрібно мати картки Monobank або Приватбанку під час оформлення замовлення оберіть спосіб оплати «Покупка частинами від Monobank» або «Оплата частинами від ПриватБанку»
ПриватБанк
2-4 платежі
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки