Вхід або реєстрація
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
Brownian diffusion is the motion of one or more solute molecules in a sea of very many, much smaller solvent molecules. Its importance today owes mainly to cellular chemistry, since Brownian diffusion is one of the ways in which key reactant molecules move about inside a living cell. This book focuses on the four simplest models of Brownian diffusion: the classical Fickian model, the Einstein model, the discrete-stochastic (cell-jumping) model, and the Langevin model. The authors carefully develop the theories underlying these models, assess their relative advantages, and clarify their conditions of applicability. Special attention is given to the stochastic simulation of diffusion, and to showing how simulation can complement theory and experiment. Two self-contained tutorial chapters, one on the mathematics of random variables and the other on the mathematics of continuous Markov processes (stochastic differential equations), make the book accessible to researchers from a broad spectrum of technical backgrounds.
"In a lively tutorial style, the authors discuss some of the most widely used mathematical formulations of diffusion. They have endeavored to organize and present the subject matter from a purely logical perspective. They emphasize the basic physical assumptions and the conditions for the validity of each of the mathematical formalisms. No subtlety is bypassed, and no limitation of the theory is swept under the carpet." - Debashish Chowdhury, Physics today
"In a lively tutorial style, the authors discuss some of the most widely used mathematical formulations of diffusion. They have endeavored to organize and present the subject matter "from a purely logical perspective". They emphasize the basic physical assumptions and the conditions for the validity of each of the mathematical formalisms. No subtlety is bypassed, and no limitation of the theory is swept under the carpet." - Physics Today
Brownian diffusion is the motion of one or more solute molecules in a sea of very many, much smaller solvent molecules. Its importance today owes mainly to cellular chemistry, since Brownian diffusion is one of the ways in which key reactant molecules move about inside a living cell. This book focuses on the four simplest models of Brownian diffusion: the classical Fickian model, the Einstein model, the discrete-stochastic (cell-jumping) model, and the Langevin model. The authors carefully develop the theories underlying these models, assess their relative advantages, and clarify their conditions of applicability. Special attention is given to the stochastic simulation of diffusion, and to showing how simulation can complement theory and experiment. Two self-contained tutorial chapters, one on the mathematics of random variables and the other on the mathematics of continuous Markov processes (stochastic differential equations), make the book accessible to researchers from a broad spectrum of technical backgrounds.
"In a lively tutorial style, the authors discuss some of the most widely used mathematical formulations of diffusion. They have endeavored to organize and present the subject matter from a purely logical perspective. They emphasize the basic physical assumptions and the conditions for the validity of each of the mathematical formalisms. No subtlety is bypassed, and no limitation of the theory is swept under the carpet." - Debashish Chowdhury, Physics today
"In a lively tutorial style, the authors discuss some of the most widely used mathematical formulations of diffusion. They have endeavored to organize and present the subject matter "from a purely logical perspective". They emphasize the basic physical assumptions and the conditions for the validity of each of the mathematical formalisms. No subtlety is bypassed, and no limitation of the theory is swept under the carpet." - Physics Today