Вхід або реєстрація
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
Безкоштовно по Україні
Без вихідних, з 9 до 20
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
There exist results on the connection between the theory of wavelets and the theory of integral self-affine tiles and in particular, on the construction of wavelet bases using integral self-affine tiles. However, there are many non-integral self-affine tiles which can also yield wavelet basis. In this work, the author gives a complete characterization of all one and two dimensional A -dilation scaling sets K such that K is a self-affine tile satisfying BK=(K d1)⋃(K d2) for some d1,d2∈R2 , where A is a 2×2 integral expansive matrix with ∣detA∣=2 and B=At
There exist results on the connection between the theory of wavelets and the theory of integral self-affine tiles and in particular, on the construction of wavelet bases using integral self-affine tiles. However, there are many non-integral self-affine tiles which can also yield wavelet basis. In this work, the author gives a complete characterization of all one and two dimensional A -dilation scaling sets K such that K is a self-affine tile satisfying BK=(K d1)⋃(K d2) for some d1,d2∈R2 , where A is a 2×2 integral expansive matrix with ∣detA∣=2 and B=At