Книга Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications

Формат
Мова книги
Видавництво
Рік видання

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. 

Topics and features: 

  • Provides numerous practical case studies using real-world data throughout the book 
  • Supports understanding through hands-on experience of solving data science problems using Python 
  • Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
  • Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data 
  • Provides supplementary code resources and data at an associated website 

This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.

Код товару
20851288
Характеристики
Тип обкладинки
М'яка
Мова
Англійська
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки
Опис книги

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. 

Topics and features: 

  • Provides numerous practical case studies using real-world data throughout the book 
  • Supports understanding through hands-on experience of solving data science problems using Python 
  • Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
  • Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data 
  • Provides supplementary code resources and data at an associated website 

This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.

Відгуки
Виникли запитання? 0-800-335-425
2592 грн
Доставка з UK 20-30 днів
Паперова книга
Сплачуйте частинами
Щоб сплатити частинами: потрібно мати картки Monobank або Приватбанку під час оформлення замовлення оберіть спосіб оплати «Покупка частинами від Monobank» або «Оплата частинами від ПриватБанку»
ПриватБанк
2-4 платежі
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки