Книга Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp

Формат
Мова книги
Рік видання

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help.

Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira and explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows.

With this book, you'll learn:

  • How DP guarantees privacy when other data anonymization methods don't
  • What preserving individual privacy in a dataset entails
  • How to apply DP in several real-world scenarios and datasets
  • Potential privacy attack methods, including what it means to perform a reidentification attack
  • How to use the OpenDP library in privacy-preserving data releases
  • How to interpret guarantees provided by specific DP data releases
Код товару
20794893
Характеристики
Тип обкладинки
М'яка
Мова
Англійська
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки
Опис книги

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help.

Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira and explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows.

With this book, you'll learn:

  • How DP guarantees privacy when other data anonymization methods don't
  • What preserving individual privacy in a dataset entails
  • How to apply DP in several real-world scenarios and datasets
  • Potential privacy attack methods, including what it means to perform a reidentification attack
  • How to use the OpenDP library in privacy-preserving data releases
  • How to interpret guarantees provided by specific DP data releases
Відгуки
Виникли запитання? 0-800-335-425
4147 грн
Доставка з UK 20-30 днів
Паперова книга
Сплачуйте частинами
Щоб сплатити частинами: потрібно мати картки Monobank або Приватбанку під час оформлення замовлення оберіть спосіб оплати «Покупка частинами від Monobank» або «Оплата частинами від ПриватБанку»
ПриватБанк
2-4 платежі
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки