Вхід або реєстрація
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
Безкоштовно по Україні
Без вихідних, з 9 до 20
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
The authors consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. They present a general procedure which associates to every strongly local vertex operator algebra $V$ a conformal net $\mathcal A_V$ acting on the Hilbert space completion of $V$ and prove that the isomorphism class of $\mathcal A_V$ does not depend on the choice of the scalar product on $V$. They show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra $V$, the map $W\mapsto \mathcal A_W$ gives a one-to-one correspondence between the unitary subalgebras $W$ of $V$ and the covariant subnets of $\mathcal A_V$.
The authors consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. They present a general procedure which associates to every strongly local vertex operator algebra $V$ a conformal net $\mathcal A_V$ acting on the Hilbert space completion of $V$ and prove that the isomorphism class of $\mathcal A_V$ does not depend on the choice of the scalar product on $V$. They show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra $V$, the map $W\mapsto \mathcal A_W$ gives a one-to-one correspondence between the unitary subalgebras $W$ of $V$ and the covariant subnets of $\mathcal A_V$.