Книга Data Science at Scale with Python and Dask

Формат
Мова книги
Видавництво
Рік видання

Large datasets tend to be distributed, non-uniform, and prone to change. Dask simplifies the process of ingesting, filtering, and transforming data, reducing or eliminating the need for a heavyweight framework like Spark.

 

Data Science at Scale with Python and Dask teaches readers how to build distributed data projects that can handle huge amounts of data. The book introduces Dask Data Frames and teaches helpful code patterns to streamline the reader’s analysis.

 

Key Features

  • Working with large structured datasets
  • Writing DataFrames
  • Cleaningand visualizing DataFrames
  • Machine learning with Dask-ML
  • Working with Bags and Arrays

 

Written for data engineers and scientists with experience using Python. Knowledge of the PyData stack (Pandas, NumPy, and Scikit-learn) will be helpful. No experience with low-level parallelism is required.

 

About the technology

Dask is a self-contained, easily extendible library designed to query, stream, filter, and consolidate huge datasets.

 

Jesse Daniel has five years of experience writing applications in Python, including three years working with in the PyData stack (Pandas, NumPy, SciPy, Scikit-Learn). Jesse joined the faculty of the University of Denver in 2016 as an adjunct professor of business information and analytics, where he currently teaches a Python for Data Science course.

Код товару
20710421
Характеристики
Тип обкладинки
М'яка
Мова
Англійська
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки
Опис книги

Large datasets tend to be distributed, non-uniform, and prone to change. Dask simplifies the process of ingesting, filtering, and transforming data, reducing or eliminating the need for a heavyweight framework like Spark.

 

Data Science at Scale with Python and Dask teaches readers how to build distributed data projects that can handle huge amounts of data. The book introduces Dask Data Frames and teaches helpful code patterns to streamline the reader’s analysis.

 

Key Features

  • Working with large structured datasets
  • Writing DataFrames
  • Cleaningand visualizing DataFrames
  • Machine learning with Dask-ML
  • Working with Bags and Arrays

 

Written for data engineers and scientists with experience using Python. Knowledge of the PyData stack (Pandas, NumPy, and Scikit-learn) will be helpful. No experience with low-level parallelism is required.

 

About the technology

Dask is a self-contained, easily extendible library designed to query, stream, filter, and consolidate huge datasets.

 

Jesse Daniel has five years of experience writing applications in Python, including three years working with in the PyData stack (Pandas, NumPy, SciPy, Scikit-Learn). Jesse joined the faculty of the University of Denver in 2016 as an adjunct professor of business information and analytics, where he currently teaches a Python for Data Science course.

Відгуки
Виникли запитання? 0-800-335-425
2592 грн
Доставка з UK 20-30 днів
Паперова книга
Сплачуйте частинами
Щоб сплатити частинами: потрібно мати картки Monobank або Приватбанку під час оформлення замовлення оберіть спосіб оплати «Покупка частинами від Monobank» або «Оплата частинами від ПриватБанку»
ПриватБанк
2-4 платежі
Доставка та оплата
Вказати місто доставки Щоб бачити точні умови доставки