Вхід або реєстрація
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
Безкоштовно по Україні
Без вихідних, з 9 до 20
Для відслідковування статусу замовлень та рекомендацій
Щоб бачити терміни доставки
The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented 2-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a 2-manifold.
The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented 2-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a 2-manifold.