Книга An Introduction to Time Series Analysis and Forecasting: With Applications of SAS® and SPSS®

Формат
Мова книги
Видавництво
Рік видання

Key Features * Describes principal approaches to time series analysis and forecasting * Presents examples from public opinion research, policy analysis, political science, economics, and sociology * Free Web site contains the data used in most chapters, facilitating learning * Math level pitched to general social science usage * Glossary makes the material accessible for readers at all levels

Providing a clear explanation of the fundamental theory of time series analysis and forecasting, this book couples theory with applications of two popular statistical packages--SAS and SPSS. The text examines moving average, exponential smoothing, Census X-11 deseasonalization, ARIMA, intervention, transfer function, and autoregressive error models and has brief discussions of ARCH and GARCH models. The book features treatments of forecast improvement with regression and autoregression combination models and model and forecast evaluation, along with a sample size analysis for common time series models to attain adequate statistical power. The careful linkage of the theoretical constructs with the practical considerations involved in utilizing the statistical packages makes it easy for the user to properly apply these techniques.

Код товару
20067888
Характеристики
Тип обкладинки
Тверда
Мова
Англійська
Опис книги

Key Features * Describes principal approaches to time series analysis and forecasting * Presents examples from public opinion research, policy analysis, political science, economics, and sociology * Free Web site contains the data used in most chapters, facilitating learning * Math level pitched to general social science usage * Glossary makes the material accessible for readers at all levels

Providing a clear explanation of the fundamental theory of time series analysis and forecasting, this book couples theory with applications of two popular statistical packages--SAS and SPSS. The text examines moving average, exponential smoothing, Census X-11 deseasonalization, ARIMA, intervention, transfer function, and autoregressive error models and has brief discussions of ARCH and GARCH models. The book features treatments of forecast improvement with regression and autoregression combination models and model and forecast evaluation, along with a sample size analysis for common time series models to attain adequate statistical power. The careful linkage of the theoretical constructs with the practical considerations involved in utilizing the statistical packages makes it easy for the user to properly apply these techniques.

Відгуки
Виникли запитання? 0-800-335-425
6221 грн
Немає в наявності
Паперова книга