Книга The Computational Content Analyst: Using Machine Learning to Classify Media Messages

Формат
Язык книги
Издательство
Год издания

Most digital content, whether it be thousands of news articles, or millions of social media posts, are too large for the naked eye alone. Often, the advent of immense data sets requires a more productive approach to labelling media beyond a team of researchers. This book offers practical guidance and Python code to traverse the vast expanses of data—significantly enhancing productivity without compromising scholarly integrity. We’ll survey a wide away of computer-based classification approaches, focusing on easy-to-understand methodological explanations and best practices to ensure that your data is being labelled accurately and precisely. By reading this book, you should leave with an understanding of how to select the best computational content analysis methodology to your needs for the data and problem you have.

This guide gives researchers the tools they need to amplify their analytical reach through the integration of content analysis with computational classification approaches, including machine learning and the latest advancements in generative AI and Large Language Models (LLMs). It is particularly useful for academic researchers looking to classify media data, and advanced scholars in mass communications research, media studies, digital communication, political communication, and journalism.

Complementing the book are online resources: datasets for practice, Python code scripts, extended exercise solutions, and practice quizzes for students, as well as test banks and essay prompts for instructors. Please visit www.routledge.com/9781032846354.

Код товара
20567166
Характеристики
Тип обложки
Твердый
Язык
Английский
Описание книги

Most digital content, whether it be thousands of news articles, or millions of social media posts, are too large for the naked eye alone. Often, the advent of immense data sets requires a more productive approach to labelling media beyond a team of researchers. This book offers practical guidance and Python code to traverse the vast expanses of data—significantly enhancing productivity without compromising scholarly integrity. We’ll survey a wide away of computer-based classification approaches, focusing on easy-to-understand methodological explanations and best practices to ensure that your data is being labelled accurately and precisely. By reading this book, you should leave with an understanding of how to select the best computational content analysis methodology to your needs for the data and problem you have.

This guide gives researchers the tools they need to amplify their analytical reach through the integration of content analysis with computational classification approaches, including machine learning and the latest advancements in generative AI and Large Language Models (LLMs). It is particularly useful for academic researchers looking to classify media data, and advanced scholars in mass communications research, media studies, digital communication, political communication, and journalism.

Complementing the book are online resources: datasets for practice, Python code scripts, extended exercise solutions, and practice quizzes for students, as well as test banks and essay prompts for instructors. Please visit www.routledge.com/9781032846354.

Отзывы
Возникли вопросы? 0-800-335-425
8748 грн
Нет в наличии
Бумажная книга