Книга Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds

Книга Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds

Формат
Язык книги
Издательство
Год издания

Let $X$ be an abstract not necessarily compact orientable CR manifold of dimension $2n-1$, $n\geqslant 2$, and let $L^k$ be the $k$-th tensor power of a CR complex line bundle $L$ over $X$. Given $q\in \{0,1,\ldots ,n-1\}$, let $\Box ^{(q)}_{b,k}$ be the Gaffney extension of Kohn Laplacian for $(0,q)$ forms with values in $L^k$. For $\lambda \geq 0$, let $\Pi ^{(q)}_{k,\leq \lambda} :=E((-\infty ,\lambda ])$, where $E$ denotes the spectral measure of $\Box ^{(q)}_{b,k}$. In this work, the author proves that $\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k$, $F_k\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k$, $N_0\geq 1$, admit asymptotic expansions with respect to $k$ on the non-degenerate part of the characteristic manifold of $\Box ^{(q)}_{b,k}$, where $F_k$ is some kind of microlocal cut-off function. Moreover, we show that $F_k\Pi ^{(q)}_{k,\leq 0}F^*_k$ admits a full asymptotic expansion with respect to $k$ if $\Box ^{(q)}_{b,k}$ has small spectral gap property with respect to $F_k$ and $\Pi^{(q)}_{k,\leq 0}$ is $k$-negligible away the diagonal with respect to $F_k$. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR $S^1$ action.

Код товара
20026488
Характеристики
Тип обложки
Мягкий
Язык
Английский
Описание книги

Let $X$ be an abstract not necessarily compact orientable CR manifold of dimension $2n-1$, $n\geqslant 2$, and let $L^k$ be the $k$-th tensor power of a CR complex line bundle $L$ over $X$. Given $q\in \{0,1,\ldots ,n-1\}$, let $\Box ^{(q)}_{b,k}$ be the Gaffney extension of Kohn Laplacian for $(0,q)$ forms with values in $L^k$. For $\lambda \geq 0$, let $\Pi ^{(q)}_{k,\leq \lambda} :=E((-\infty ,\lambda ])$, where $E$ denotes the spectral measure of $\Box ^{(q)}_{b,k}$. In this work, the author proves that $\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k$, $F_k\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k$, $N_0\geq 1$, admit asymptotic expansions with respect to $k$ on the non-degenerate part of the characteristic manifold of $\Box ^{(q)}_{b,k}$, where $F_k$ is some kind of microlocal cut-off function. Moreover, we show that $F_k\Pi ^{(q)}_{k,\leq 0}F^*_k$ admits a full asymptotic expansion with respect to $k$ if $\Box ^{(q)}_{b,k}$ has small spectral gap property with respect to $F_k$ and $\Pi^{(q)}_{k,\leq 0}$ is $k$-negligible away the diagonal with respect to $F_k$. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR $S^1$ action.

Отзывы
Возникли вопросы? 0-800-335-425
4407 грн
Нет в наличии
Бумажная книга