Книга Statistical Methods for Handling Incomplete Data

Формат
Язык книги
Издательство
Год издания

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

Features

  • Uses the mean score equation as a building block for developing the theory for missing data analysis
  • Provides comprehensive coverage of computational techniques for missing data analysis
  • Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation
  • Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data
  • Describes a survey sampling application
  • Updated with a new chapter on Data Integration
  • Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation

The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.

Код товара
20443471
Характеристики
Тип обложки
Мягкий
Язык
Английский
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки
Описание книги

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

Features

  • Uses the mean score equation as a building block for developing the theory for missing data analysis
  • Provides comprehensive coverage of computational techniques for missing data analysis
  • Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation
  • Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data
  • Describes a survey sampling application
  • Updated with a new chapter on Data Integration
  • Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation

The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.

Отзывы
Возникли вопросы? 0-800-335-425
2981 грн
Доставка c UK 20-30 дней
Бумажная книга
Оплачивайте частями
Чтобы оплатить частями: нужно иметь карты Monobank или ПриватБанка, при оформлении заказа выберите способ оплаты «Покупка частями от Monobank» или «Оплата частями от ПриватБанка».
ПриватБанк
2-4 платежа
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки