Вход или регистрация
Для отслеживания статуса заказов и рекомендаций
Чтобы видеть сроки доставки
Бесплатно по Украине
Без выходных, с 9 до 20
Для отслеживания статуса заказов и рекомендаций
Чтобы видеть сроки доставки
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative $d$-torus $\mathbb{T}^d_\theta$ (with $\theta$ a skew symmetric real $d\times d$-matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincare type inequality for Sobolev spaces.
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative $d$-torus $\mathbb{T}^d_\theta$ (with $\theta$ a skew symmetric real $d\times d$-matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincare type inequality for Sobolev spaces.