Книга Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data

Формат
Язык книги
Год издания

Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data-fake data generated from real data-so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions Methods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationships Multiple approaches and metrics you can use to assess data utility How analysis performed on real data can be replicated with synthetic data Privacy implications of synthetic data and methods to assess identity disclosure

Код товара
20775050
Характеристики
Тип обложки
Мягкий
Язык
Английский
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки
Описание книги

Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data-fake data generated from real data-so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions Methods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationships Multiple approaches and metrics you can use to assess data utility How analysis performed on real data can be replicated with synthetic data Privacy implications of synthetic data and methods to assess identity disclosure

Отзывы
Возникли вопросы? 0-800-335-425
3434 грн
Доставка c UK 20-30 дней
Бумажная книга
Оплачивайте частями
Чтобы оплатить частями: нужно иметь карты Monobank или ПриватБанка, при оформлении заказа выберите способ оплаты «Покупка частями от Monobank» или «Оплата частями от ПриватБанка».
ПриватБанк
2-4 платежа
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки