Книга Introduction to Data Science: Data Wrangling and Visualization with R

Формат
Язык книги
Издательство
Год издания

Unlike the first edition, the new edition has been split into two books.

Thoroughly revised and updated, this is the first book of the second edition of Introduction to Data Science: Data Wrangling and Visualization with R. It introduces skills that can help you tackle real-world data analysis challenges. These include R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation with Quarto and knitr. The new edition includes additional material on data.table, locales, and accessing data through APIs. The book is divided into four parts: R, Data Visualization, Data Wrangling, and Productivity Tools. Each part has several chapters meant to be presented as one lecture and includes dozens of exercises. The second book will cover topics including probability, statistics and prediction algorithms with R.

Throughout the book, we use motivating case studies. In each case study, we try to realistically mimic a data scientist’s experience. For each of the skills covered, we start by asking specific questions and answer these through data analysis. Examples of the case studies included in the book are: US murder rates by state, self-reported student heights, trends in world health and economics, and the impact of vaccines on infectious disease rates.

This book is meant to be a textbook for a first course in Data Science. No previous knowledge of R is necessary, although some experience with programming may be helpful. To be a successful data analyst implementing these skills covered in this book requires understanding advanced statistical concepts, such as those covered the second book. If you read and understand all the chapters and complete all the exercises in this book, and understand statistical concepts, you will be well-positioned to perform basic data analysis tasks and you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Код товара
20739988
Характеристики
Тип обложки
Твердый
Язык
Английский
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки
Описание книги

Unlike the first edition, the new edition has been split into two books.

Thoroughly revised and updated, this is the first book of the second edition of Introduction to Data Science: Data Wrangling and Visualization with R. It introduces skills that can help you tackle real-world data analysis challenges. These include R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation with Quarto and knitr. The new edition includes additional material on data.table, locales, and accessing data through APIs. The book is divided into four parts: R, Data Visualization, Data Wrangling, and Productivity Tools. Each part has several chapters meant to be presented as one lecture and includes dozens of exercises. The second book will cover topics including probability, statistics and prediction algorithms with R.

Throughout the book, we use motivating case studies. In each case study, we try to realistically mimic a data scientist’s experience. For each of the skills covered, we start by asking specific questions and answer these through data analysis. Examples of the case studies included in the book are: US murder rates by state, self-reported student heights, trends in world health and economics, and the impact of vaccines on infectious disease rates.

This book is meant to be a textbook for a first course in Data Science. No previous knowledge of R is necessary, although some experience with programming may be helpful. To be a successful data analyst implementing these skills covered in this book requires understanding advanced statistical concepts, such as those covered the second book. If you read and understand all the chapters and complete all the exercises in this book, and understand statistical concepts, you will be well-positioned to perform basic data analysis tasks and you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Отзывы
Возникли вопросы? 0-800-335-425
3888 грн
Доставка c UK 20-30 дней
Бумажная книга
Оплачивайте частями
Чтобы оплатить частями: нужно иметь карты Monobank или ПриватБанка, при оформлении заказа выберите способ оплаты «Покупка частями от Monobank» или «Оплата частями от ПриватБанка».
ПриватБанк
2-4 платежа
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки