Вход или регистрация
Для отслеживания статуса заказов и рекомендаций
Чтобы видеть сроки доставки
Research data management is becoming more complicated. Researchers are collecting more data, using more complex technologies, all the while increasing the visibility of our work with the push for data sharing and open science practices. Ad hoc data management practices may have worked for us in the past, but now others need to understand our processes as well, requiring researchers to be more thoughtful in planning their data management routines.
This book is for anyone involved in a research study involving original data collection. While the book focuses on quantitative data, typically collected from human participants, many of the practices covered can apply to other types of data as well. The book contains foundational context, instructions, and practical examples to help researchers in the field of education begin to understand how to create data management workflows for large-scale, typically federally funded, research studies. The book starts by describing the research life cycle and how data management fits within this larger picture. The remaining chapters are then organized by each phase of the life cycle, with examples of best practices provided for each phase. Finally, considerations on whether the reader should implement, and how to integrate those practices into a workflow, are discussed.
Key Features:
Research data management is becoming more complicated. Researchers are collecting more data, using more complex technologies, all the while increasing the visibility of our work with the push for data sharing and open science practices. Ad hoc data management practices may have worked for us in the past, but now others need to understand our processes as well, requiring researchers to be more thoughtful in planning their data management routines.
This book is for anyone involved in a research study involving original data collection. While the book focuses on quantitative data, typically collected from human participants, many of the practices covered can apply to other types of data as well. The book contains foundational context, instructions, and practical examples to help researchers in the field of education begin to understand how to create data management workflows for large-scale, typically federally funded, research studies. The book starts by describing the research life cycle and how data management fits within this larger picture. The remaining chapters are then organized by each phase of the life cycle, with examples of best practices provided for each phase. Finally, considerations on whether the reader should implement, and how to integrate those practices into a workflow, are discussed.
Key Features: