Книга Multi-Sensor and Multi-Temporal Remote Sensing: Specific Single Class Mapping

Формат
Язык книги
Издательство
Год издания

This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields.

Key features:

  • Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes
  • Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise
  • Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI)
  • Discusses the role of training data to handle the heterogeneity within a class
  • Supports multi-sensor and multi-temporal data processing through in-house SMIC software
  • Includes case studies and practical applications for single class mapping

This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.

Код товара
20833203
Характеристики
Тип обложки
Мягкий
Язык
Английский
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки
Описание книги

This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields.

Key features:

  • Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes
  • Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise
  • Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI)
  • Discusses the role of training data to handle the heterogeneity within a class
  • Supports multi-sensor and multi-temporal data processing through in-house SMIC software
  • Includes case studies and practical applications for single class mapping

This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.

Отзывы
Возникли вопросы? 0-800-335-425
2981 грн
Доставка c UK 20-30 дней
Бумажная книга
Оплачивайте частями
Чтобы оплатить частями: нужно иметь карты Monobank или ПриватБанка, при оформлении заказа выберите способ оплаты «Покупка частями от Monobank» или «Оплата частями от ПриватБанка».
ПриватБанк
2-4 платежа
Доставка и оплата
Указать город доставки Чтобы видеть точные условия доставки